
ERA-NET CHIST-ERA: FWF 1097-N23
uComp: Embedded Human Computation for Knowl-
edge Extration and Evaluation

D4.2 V1
uComp Report on Ontology Evalution and

Extension

Editor(s) Gerhard Wohlgenannt
Responsible Partner WU
Status-Version: Final-1.0
Date: May.15, 2014
Project Number: FWF 1097-N23
Project Title: uComp: Embedded Human Computation for Knowl-

edge Extration and Evaluation

Title of Deliverable: uComp Report on Ontology Evalution and Extension
Date of delivery to the
EC:

May 15, 2014

Workpackage responsible
for the Deliverable

WP4

Editor(s): Gerhard Wohlgenannt
Contributor(s): Gerhard Wohlgenannt
Approved by: All Partners

Abstract This deliverable report (Report on Ontology Evalu-
ation and Extension, v1) presents the improvements
regarding ontology learning and ontology evolution
until month 18.

Keyword List: ontology learning, ontology evolution, human com-
putation, spectral association

Version 1.0, May.15, 2014

Document Revision History

Version Date Description Author
First draft 24/04/2014 initial draft Gerhard Wohlgenannt1

0.1 12/05/2015 extended draft Gerhard Wohlgenannt
0.2 14/05/2015 final version of v1 Gerhard Wohlgenannt

Project Title: uComp
Project Coordinator: WU

1/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

Contents

1 Executive Summary 3

2 Introduction 3

3 The Ontology Learning System 4

4 The Evidence Sources 5
4.1 The Evidence Sources . 5

4.1.1 Evidence from Text . 6
4.1.2 Evidence from Social Media . 7
4.1.3 Evidence from Structured Data . 7

4.2 The Source Impact Vector . 8
4.3 Impact Refinement . 8

5 Redesign of the Database 9

6 Integration of Ontology Learning and Embedded Human Computation 9

7 Interface for Tracing Evolution and System Management 11
7.1 Related Work in this Area . 12
7.2 The Web Service & Administration Interface 12
7.3 Automation . 14

8 Optimization and Scalablity 14
8.1 Introduction to Performance Optimization 14
8.2 Related Work on Performance Optimization 15
8.3 Methods . 16
8.4 Evaluation . 18
8.5 CONCLUSIONS ON PERFORMANCE OPTIMIZATION 21

9 Conclusions 21

Project Title: uComp
Project Coordinator: WU

2/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

1 Executive Summary

This document describes the intitial version of improvements and integration efforts for our
ontology learning and ontology evolution framework. We did a lot of work and making the
system more efficient and scalable, worked on ontology evolution aspects and started efforts
towards integration with the uComp API. As the uComp API is in a very preliminary state yet,
integration is only starting. Furthermore we resigned the underlying ontology learning database
to make it compatible with requirements in uComp. All foundational work on scalability of
the ontology learning system was necessary to achieve uComps’ goal of learning ontologies in
periodic intervals in multiple domains and with multiple languages.

2 Introduction

Ontologies are a cornerstone technology and backbone for the Semantic Web, but the manual
creation of ontologies is cumbersome and expensive, therefore there have been many efforts
towards (semi-)automatic ontology generation in order to assist ontology engineers. The
process of ontology learning (typically from text) in a first step extracts facts and patterns
(evidence) from text, and then turns them into shareable high-level constructs, with the goal
to fuel everyday applications like Web search and enabling intelligent systems [23].

At the moment, our architecture generates lightweight ontologies in the domain of “climate
change” in monthly intervals, we use periodic computations to trace the evolution of the
domain. As each ontology is generated from scratch, it is straightforward to measure and
compare results obtained by using different settings (regarding the evidence from heterogeneous
input sources).

In uComp WP4 we build on the existing ontology learning system and in a first step need
to make it ready for the requirements in the project. Those requirements are the following:

• Dealing with noisy and heterogeneous data as evidence sources for ontology learning
and evolution.

• Computation of confidence values for ontological entities and compare those over time
(ontology evolution).

• Impact refinement, adapt the impact of evidence sources over time according to observed
quality of suggestions.

• Dealing with multilingual repositories and do multilingual ontology learning. Identify
relations across languages.

• Use EHC to evaluate ontological entities, especially concepts.

• Application of the ontology learning algorithms in different domains.

The following foundational work needs to be done to make the system ready for meeting
the goals above:

Project Title: uComp
Project Coordinator: WU

3/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

Figure 1: Ontology Learning System Architecture Diagram [22].

• Refine the evidence integration and confidence management model to deal with noisy
and heterogeneous data (Section 4).

• A new layout for the database that saves the ontologies. This is covered in Section 5.

• Set up a basic version of Embedded Human Computation (EHC) components, starting
with a dedicated Game with a Purpose run on Facebook, see Section 6.

• Implement a Web interface to i) control and monitor all ontology learning runs, ii) visu-
alize the result and display evolution aspects on various levels of granularity (Section 7).

The outline of this deliverable is as follows: Section 3 gives an overview of the ontology
learning system necessary the understand the remainder. Section 4 introduces the hetero-
geneous evidence sources, their integration, and source impact refinement. In Section 5 we
present the new database layout, which is followed by the initial efforts towards integration of
EHC into the ontology learning framework (Section 6). The new Web interface to the system
is described in Section 7, whereas Section 8.1 contains information about the optimization of
the system, especially of a new method to speed up spreading activation. Finally, Section 8.5
concludes the deliverable.

3 The Ontology Learning System

This section describes the system for learning domain-specific ontologies (T-box) underlying
the work presented in this deliverable. The framework evolved since 2005 and has been
presented in various publications. The original system [14] learns from domain text only
and already includes spreading activation as the major building block to integrate evidence.
Weichselbraun et al. evaluate information from social media as additional evidence source [20]
and present novel methods for learning non-taxonomic relations [21]. Finally, Wohlgenannt
et al. discusses data structures and algorithms for the fine-grained optimization of the system
from feedback collected with games with a purpose [22].

Project Title: uComp
Project Coordinator: WU

4/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

The description given here is limited to a basic overview of the system needed to better
understand the remainder of the deliverable. Figure 1 gives a graphical illustration of the major
building blocks. The initial input to the process is a typically very small seed ontology (a few
concepts and relations) in a particular domain. The system starts by collecting evidence for new
concepts and relations in heterogeneous sources, i.e. domain text, social sources and structured
sources (e.g. WordNet or online ontologies). A semantic network stores the gathered data.
This semantic network is then transformed into a spreading activation network, from which
new concept candidates are computed. Another round of spreading activation positions each
of the new concepts in the seed ontology. Games with a purpose verify the relevance of new
concepts and their position, as well as help to optimize the system performance. Finally the
extended ontology acts as new seed ontology for the next step of ontology extension. After a
pre-configured number of extension steps the system halts.

So what is spreading activation actually used for? The evidence acquisition phase collects
a large number of concept candidates and relations to the seed concepts, the number of
candidate terms can easily exceed a few thousand. The system includes a big number of
so-called evidence sources, for example co-occurring keywords in domain text of US media,
UK media, related tags from twitter, disambiguated hyper-/hyponyms from WordNet, and
many others. Each of the evidence sources generates a number of new candidate terms
(in this context we use term and concept synonymously) for any seed concept – all this
information gets collected in the semantic network. A transformation algorithm creates the
spreading activation network from the semantic network, the evidence source which suggested
the relation influences the weight of the link. Spreading activation detects the most relevant
n concepts (where n = 25 for example) from all the candidates. Roughly, candidates which
are supported by different sources and by sources with a higher link weight (“source impact”)
are more likely to be selected.

Spreading activation is further used to position the selected concepts with respect to the
seed ontology. For this purpose, the system reverses the activation flow in the network, and
for every new concept determines the seed concept with the strongest association.

Figure 2 shows an extended ontology generated by the ontology learning system. Starting
from the seed ontology (yellow), the first round of extension generated and positioned new
concepts (light-green, “stage one”). Further rounds, namely stage two (green) and three
(dark-green), were used to expand the ontology.

4 The Evidence Sources

A major requirement of WP4 is to allow the system to work with noisy and heterogeneous data
as evidence sources. This section describes those sources in Section 4.1, a method to capture
and control source impact (Section 4.2), and our approach to adapt source impact (“impact
refinement”) according to observed quality of suggestions by evidence sources (Section 4.3).

4.1 The Evidence Sources

The first step of the ontology learning process is the collection of evidence data. The input
to this process are seed concepts. For every seed concept Cs (or rather its label) a suite of

Project Title: uComp
Project Coordinator: WU

5/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

Figure 2: An extended ontology (clipped) – concept labels and relations

algorithms compute related terms. A network data structure (the “semantic network”) then
represents the relations between seed and candidate terms Cc. Every algorithm that generates
related terms for input concepts constitutes an evidence source. The following subsections
classify the evidence sources used by the type of underlying dataset (text, social, structured).

4.1.1 Evidence from Text

Ontology learning from text relies on a (domain-specific) text corpus. As our goal is to enable
monitoring of ontology evolution, the system ensures that the documents in those domain
text corpora stem from the time interval under consideration (in most cases the last week or
the last month). The authors have repeatedly and successfully applied the webLyzard suite
of Web mining tools (www.weblyzard.com) for generating high-quality domain corpora with
the required characteristics. Evidence sources based on temporally segmented domain corpora
include [13]:

• Keywords: After compiling a target corpus (= set of documents or sentences where the
term occurs) for each seed term and source, the system identifies keywords by comparing
the term distribution of the target corpus with a reference corpus (all domain documents
in the period) by means of co-occurrence statistics.

• Trigger phrases: Extract related terms scanning the domain text with Hearst-style pat-

Project Title: uComp
Project Coordinator: WU

6/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

terns.

4.1.2 Evidence from Social Media

We distinguish two basic ways to access online social media for collecting evidence, i.e. typed
relations to new term candidates, with seed terms as input:

• Direct access to related terms using the TagInfoService interface of the easy Web Re-
trieval Toolkit (www.semanticlab.net/index.php/eWRT). Currently the system collects
evidence from Twitter, Flickr and Del.icio.us. Weichselbraun et al. [20] demonstrate the
ontology learning system’s benefit from the integration of terminology captured from
online social media.

• The webLyzard mirroring services contain components to query Youtube, Facebook,
Twitter, etc. to generate domain text corpora. We then apply the extraction methods
presented in the previous subsection to these corpora.

unstructured social
delicious technorati twitter

global warming animalcare agile aces
building architects apple afghan
coal atmosphere architecture afghanistan

climate change policy britney carbon al gore
pact carbonfootprint carbon-dioxide alternatefuel

.

Table 1: Terms suggested by unstructured and social evidence sources.

4.1.3 Evidence from Structured Data

The existing ontology learning system already uses WordNet as an evidence source and for
disambiguation processes. The new system integrates additional structured data sources. The
following structured sources serve as a starting point, with further sources being planned to
be added over time:

• DBpedia: By leveraging components developed in [21], the system queries the DB-
pedia SPARQL endpoint to gain new terms connected to a seed term. The query
uses the seed term as subject, and properties such as dcterms:subject or dbpedia-
owl:wikiPageRedirects. The resulting objects are candidates for the semantic network.

• WordNet: WordNet [6] provides hyponyms, hypernyms, and synonyms for terms
(Synsets).

Tables 2 and 3 give an overview of evidence sources used in the improved version of the
ontology learning system.

Project Title: uComp
Project Coordinator: WU

7/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

Method
Data sources

domain text from: Keywords/page Keywords/sentence Hearst patterns
US news media 1 2 3
UK news media 4 5 6
AU/NZ news media 7 8 9
other news media 10 11 12
Social media: Twitter 13 14
Social media: Youtube 15 16
Social media: Facebook 17 18
Social media: Google+ 19 20
NGOs Websites 21 22 23
Fortune 1000 Websites 24 25 26

Table 2: The 26 evidences sources used in the ontology learning process based on domain
text.

Method
Data source: hypernyms hyponyms synonyms API SPARQL

WordNet 27 28 29
DBpedia 30
Twitter 31
Flickr 32

Table 3: The other 6 evidence sources, which are based on WordNet, Social Media APIs, and
DBpedia.

4.2 The Source Impact Vector

Our approach is novel in its use of an adaptive source impact vector (SIV) to influence spreading
activation weights. Previous research used predefined source weights when transforming the
semantic network to a spreading activation network.

Equation 1 shows a SIV for a given point in time ti which contains the impact values I for
evidence sources esj.

SIVti =
[
Ies1 Ies2 · · · Iesn

]
(1)

The source impact values adapt according to user feedback (see below), lowering the
impact of sources which tend to yield low-quality evidence data and vice versa. We trace the
evolution of the SIV over time. The added temporal dimension transforms the SIV into a
source impact matrix. We intialize the SIV (for time t0) with preset values stemming from the
existing system.

4.3 Impact Refinement

Our method gradually adapts the SIV over time according to the observed quality of evidence
sources. We assess the quality via the ratio of relevant to non-relevant concept candidates

Project Title: uComp
Project Coordinator: WU

8/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

suggested by the respective source. For a smooth adaption of source impact and robustness
the SIV depends on devalued data from all past periods within the last 365 days.

The procedure is as follows: i) Do a DB lookup to get concept candidates suggested
by the respective evidence source. ii) Do a lookup of the GWAP ratings for those concept
candidates. ii) Use this data as rel and nrel to compute the quality of the source (Equation 2).
iv) Use Equation 3 to devalue past SIVs linearly, ie. the older the SIV entry, the stronger its
devaluation.

∆SIVe,t0 = 1 +
rel − nrel

rel + nrel
∗ 1

5
(2)

SIVe,t0 = ∆SIVe,t0 ∗
∑n

i=1 SIVe,ti ∗
(

365−age(ti)
365

)
∑n

i=1
365−age(ti)

365

(3)

5 Redesign of the Database

This section gives a very brief introduction to the new DB schema used to save our ontologies
and all data relevant for evidence integration and source impact refinement. The previous DB
format did not have support for flexible selection of evidence sources per ontology domain or
the use of multilingual data sources.

Figure 3 shows the ER diagram. We won’t go into unnecessary technical detail at this
point, but focus on a few key facts:

• Table ontology domain helps to capture different domain, and compute ontologies for
that domain with a specific setting.

• Relation table 1 reflects the semantic network, ie. all evidence collected for a single
ontology run.

• We can now flexibly select evidence sources per ontology domain / ontology setting –
using of the evidence source and evidence selection tables.

6 Integration of Ontology Learning and Embedded Hu-
man Computation

A rating and validation method is needed to determine the quality of the suggested concepts
(and other ontological entities) and therefore the quality of the source which suggested a
concept. The rating system itself will only return the results of the ratings to the Web service
which will start the impact refinement process. The communication between the Web service
and the rating system will be explained below.

A dedicated “game with a purpose” (GWAP) has been set up for this validation process.
In this GWAP Facebook users decide whether or not a concept is related to the domain for
which the ontology has been computed. The game offers the users the possibility to state that
a concept is either related or not related and it is possible to skip questions if the user does not

Project Title: uComp
Project Coordinator: WU

9/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

Figure 3: ER schema of the new DB layout

know any answer. The game collects the various answers of the users for each concept and
returns them to the ontology learning service. Figure 4 present the interface of the GWAP.

The communication between GWAP and the ontology learning system is done in JSON.
To send a GWAP task, a JSON object like in the example below is sent. It specifies the date,
ontology domain, and the concepts to be evaluated.

{ 10.10.2012 : { climate change: [ice,water,...] ,

finance: [euro,business,...]

},

"PORT":5000

}

The game tasks are presented to the game players, when results are available, those are
sent back to the ontology learning framework. The result might look like this:

{ 10.10.2012 : { climate change: [[ice, 1,0,3],

[water, 2,3,4]

],

}

10.10.2012 : { finance: [[euro, 10,0,1],

[business, 1,0,4]

]

}

Project Title: uComp
Project Coordinator: WU

10/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

Figure 4: Our Facebook-based game for assessing concept relevant

In a nutshell, the GWAP API appends the user votes to the concepts, in the form of (yes-
votes, don’t know-votes, no-votes). For example, 10 users says that concept euro is relevant
for the domain of finance, 0 users are undecided, and 1 user says the concept is not relevant.
We use the majority vote principle to get a final result.

As the uComp API is just getting ready, there is no prototype yet that uses the features
of the uComp API. Future work will focus on using the uComp API for validating ontological
entities, and on studying the quality of crowd rating and their impact on the ontology learning
cycles.

7 Interface for Tracing Evolution and System Manage-
ment

This section gives an introduction of the Web interface which has been set up in uComp to
management and monitor ontology learning runs, as well as to visualize ontology evolution.

Ontology evolution is concerned with the adaptation of the ontology to changes in the
domain (data-driven change), changed user requirements (user-driven change) or to correct
flaws in the original design. Ontology evolution requires frequent updates or rebuilding of the
ontology, esp. if investigating emerging trends and patterns in highly dynamic domains. In
such a context, a greatly automated ontology learning process is very beneficial. We show a
prototype that aims to keep manual input in ontology learning and evolution to a minimum by
automating the workflow in the ontology learning cycle. It delegates demand for human input
to sources that are cheaper and much more scalable then conventional evaluation by domain
experts. So, one of the goals is to minimize manual (domain expert and engineer) effort in

Project Title: uComp
Project Coordinator: WU

11/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

repeated ontology learning cycles.

7.1 Related Work in this Area

The evaluation of newly acquired concept candidates with Games with a Purpose (GWAPs)
or human labor markets such as CrowdFlower is a central factor to make our system scalable.
Noy et al. [16] demonstrate the suitability of Crowdsourcing with Amazon Mechanical Turk
for evaluating hierarchical relations in ontologies. GWAPs have already been used for example
for mapping Wikipedia articles to specific classes in the Proton ontology in the OntoPronto
game [18] or for relation detection between concepts [17]. Existing tools typically do not offer
a tight integration of evaluation results into the learning algorithms, however.

Ontology evolution can be defined as the “timely adaptation of an ontology to the arising
changes and the consistent management of these changes” [7]. It helps to keep ontologies
up-to-date and useful. The presented prototype integrates heterogeneous input sources in
the evolution process, which to our knowledge is a novel approach except for initial efforts
in the RELExO framework [15]. In contrast to the Probabilistic Ontology Model (POM) in
Text2Onto [2], which aims at change management aspects of ontology evolution, our auto-
mated approach targets the detection of trends and patterns in the data structures underlying
and reflecting the ontology.

7.2 The Web Service & Administration Interface

Here we includes technical information about the Web service and the corresponding admin-
istrative interface. The main function of the Web service is to guide the workflow, ie. calling
the involved components with the right parameters and handling the communication between
internal and external services.

In our environment, a cron job initiates the generation of new ontologies for all predefined
configurations at the end of each month via the REST API of the Web service. A monthly
interval is appropriate for our purposes, any other interval is conceivable.

The Web service handles the following jobs which help to minimize manual intervention:

• Check for the existence and correct installation of the required Linux and Python compo-
nents and the availability of the keyword computation service; notify the user if anything
is missing.

• Create the folder structure for new ontologies in the file system

• Handle and save log, config and JSON files for each ontology

• Create graphical representations of the created ontologies for each stage

• Compute new source impact values based on the results of the evaluation.

Figure 5 shows parts of the administration interface. The interface is divided into four
parts. At the top (not shown in the screenshot) it displays information about the current
status of the system and provides a link to the Web service’s global log file. Below there is
a list of ontologies existing in the system. For any ontology the user can view the logs for

Project Title: uComp
Project Coordinator: WU

12/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

Figure 5: The Administration Interface (clipped)

the three stages, download all data or delete it. The logs also contain the resulting ontology
graph.

The user has a wide variety of parameter settings to choose from, these can be grouped
into the following classes:

• Algorithms and evidence sources: Set the algorithms to be used to create the new
ontology (eg. spreading activation or spectral association), or set the period of time to
be used.

• Testing: Just compute the ontologies, but do not save the results into the database
(save to db), save the results into another database to better separate results for
production and testing environments (db name), do (not) update the source impact
values after the completed run (do statistics).

• Evaluation: Disable evaluating and filtering terms via the evaluation service but just
keeping all concept candidates automatically (send to facebook), or not filtering the
concepts even if GWAP evaluation has been done (clean concepts).

The text areas CSV and OWL are for entering the seed ontology for a new ontology
learning process. The OWL text area receives the seed concepts and their relations as triples
of subject, predicate and object. These concepts are consistent with the CSV area where a
regular expression can be set for each concept; the text based evidence sources (eg. keyword
detection) use the regular expression as a lexical representation of the concept.

Project Title: uComp
Project Coordinator: WU

13/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

Finally the user can give the new ontology a name, if omitted, a name including creation
date and time will be generated.

The last part of the interface (not shown in the screenshot) displays information about
ontology computations currently running, including their names, starting time, parameter
settings, etc., and gives the option to terminate running computations.

7.3 Automation

A lot of effort has been made to automate the system as far as possible. A Web service (see
next section) controls the workflow, evaluation (GWAPs/CrowdFlower) is the only task in the
learning cycle where human input cannot be avoided. Furthermore, to speed up computations
we use caching strategies in various processes:

• The evidence collection phase covers processes that are computationally complex (such
as the computation of keywords via co-occurrence statistics) or call third party APIs.
With the help of the eWRT toolkit 1 the framework applies fine-grained caching strategies
to only call the respective evidence collection service for a seed when the necessary data
cannot be derived from previous computations already existing in the system.

• The evaluation service (Facebook GWAP) stores the results of past concept validation
processes, and lets users only evaluate entirely new concepts. To allow for changes in
the domain, concepts have to be re-evaluated after a period of six months.

• To improve the run-time performance of the spreading activation algorithms we experi-
ment with an approximation technique called spectral association [9].

• When manually calling the ontology extension process, eg. for experimenting with pa-
rameter settings, new domains or revised code, various steps in the process can be
deactivated easily and thereby forced to re-use existing data.

8 Optimization and Scalablity

8.1 Introduction to Performance Optimization

Spreading activation is a method to search semantic networks, which can be used in
ontology learning for example for finding semantically related concept candidates for existing
concepts [14]. In the ontology learning system used as the foundation and test bed spreading
activation is an essential tool used for the selection of domain-relevant concept candidates
from a big semantic network as well as for positioning the new concepts in the ontology [20].
Spreading activation helps us to pick the most relevant concepts and associations from a vast
number of evidence (candidate concepts and relations) generated from heterogeneous input
sources.

1www.weblyzard.com/ewrt

Project Title: uComp
Project Coordinator: WU

14/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

In highly dynamic domains, and especially if the evolution of ontologies is of interest, new
versions or updates of ontologies need to be generated in regular intervals. This makes the
run-time performance for the ontology learning algorithms an important factor. Spreading
activation is an iterative process and can be time-consuming to calculate, therefore Havasi et
al. suggest a method called spectral association to compute the resulting activation levels after
a number of steps of spreading activation in one step [10]. Spectral association approximates
spreading activation using spectral decomposition of the concept matrix C, for details see
Section 8.3.

This section compares the two methods, i.e. the iterative spreading activation method
and spectral association, in a specific environment for learning lightweight domain ontologies.
We evaluate various aspects, including the run-time performance of both techniques and the
impact on relevance of the resulting ontologies, discuss the implementation, and provide a
general reflection of pros and cons of the methods observed as well as hints on when to
apply which technique. The datasets used or domain is not important for the runtime of the
evaluated algorithms – only the size of the semantic network.

Section 8.2 provides an overview of related work. The methods of spreading activation and
spectral association are described in detail in Section 8.3. Section 3 introduces the ontology
learning framework which applies the methods. Section 8.4 evaluates the run-time performance
and other characteristics of the methods described earlier, and finally Section 8.5 summarizes
the findings and gives an outlook on future work.

8.2 Related Work on Performance Optimization

Spreading activation was first introduced by Collins et al. as a theory of human semantic pro-
cessing [3]. Spreading activation is frequently used in information retrieval, Crestani provides
a survey of spreading activation techniques on semantic networks in associative information
retrieval [4]. The conclusions of the survey are positive, spreading activation is capable of
providing good results.

Hasan proposes a system to apply spreading activation for information access within orga-
nizations [8]. The system integrates (i) documents, (ii) statistically derived information such
as terms and entities extracted from those documents and (iii) a precise knowledge in form of
an organizational ontology into a spreading activation network. User feedback on relevance of
query results adapts the weights in the spreading activation network (learning).

Katifori et al. outline a framework which applies spreading activation over personal ontolo-
gies in the context of a personal interaction management system [12]. The goal of spreading
activation is context inference depending on the users’ recent actions and a populated per-
sonal information ontology to support user actions, for example generating suggestions when
filling a Web form. The method is extended by augmenting the personal ontology with cached
data from external repositories [5]. The selection of external data relates to the (spreading)
activation level of entities already in the personal ontology or cached data.

Spectral association is an approximation technique for spreading activation networks, first
presented in [10]. The paper describes the Colorizer application, which hypothesizes color
values that represent given words and sentences. The common sense reasoning application de-
termines the colors depending on physical descriptions of objects and emotional connotations.
Spectral association interpolates colors for unknown concepts based on semantic relatedness

Project Title: uComp
Project Coordinator: WU

15/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

to (in terms of color) known concepts. To ease computational complexity, Colorizer uses the
spectral association approximation as a measure of semantic relatedness.

Spectral association is a variant of the AnalogySpace representation [19]. AnalogySpace
addresses the problem of reasoning over large common sense knowledge bases with the charac-
teristics of noisy and subjective data. The goal is to find rough conclusions based on similarities
and tendencies, as traditional proof procedures are not feasible in such an environment. Anal-
ogySpace forms analogical closures of a semantic network through dimensionality reduction.

A number of tools already utilize spectral association. Sentic Corner [1] is an application
that dynamically collects audio, video, images and text related to and suitable for a user’s
current mood and displays this content on a multi-faceted classification Website. The system
detects user mood via the analysis of semantics and sentics on the user’s microblog (e.g. Twit-
ter) postings. Spectral association is one of the fundamental methods used in the system, it
generates semantically related concepts from the descriptions of music, films, images and text
itself.

The Glass Infrastructure [9] allows the discovery of latent connections between people,
projects, and ideas in an organisation. The system uses spectral association to generate a
“semantic space” from project information, where closeness in the space signifies similarity of
people, projects and ideas.

8.3 Methods

As here we focus on comparing spreading activation and spectral association, this section will
describe them in some detail.

Spreading activation is a technique for searching associative, neural and semantic networks.
The method requires a network structure with numeric or discrete relations between the net-
work nodes. In the beginning the activation level of all nodes in the network is set to zero.
The process starts by labeling source nodes, that is setting the activation level of one or more
nodes to a value higher than the firing threshold (F). Every unfired node with an activation
level > F fires to all its connected nodes, the energy propagated results from a multiplication
of the energy of the source, the weight of the connection, and the decay factor D. In further
iterations unfired nodes that received activation in the previous step will fire to their neighbors.
The lower the decay factor D, the less activation is spread to nodes further away from the
original source nodes. The process terminates when no more unfired nodes (with activation
above the firing threshold F) exist in the network. As a result of the process, the activation
levels of all nodes in the network give measures of association to the source nodes, i.e. the
higher the activation level of a node in the network at the end, the stronger the association
to the source node(s).

Equation 4 outlines the activation level adaption of a single node Aj when receiving energy
from node Ai via a connection with weight Wi,j, reduced by the static decay factor D.
Obviously, this energy accumulation is applied for every incoming (and firing) node of Aj.

Aj = Aj + (Ai ·Wi,j ·D) (4)

As already mentioned, spreading activation can be time-consuming to calculate [10]. Spec-
tral association approximates many steps of spreading activation. The spectral association

Project Title: uComp
Project Coordinator: WU

16/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

method starts with the transformation of the spreading activation network into a square sym-
metric matrix C of concepts. The rows and columns of C are labeled with the concepts from
the network, and the values in the matrix represent the relation strength between the concepts.
The relation strength of a concept to itself is 1. If there was no connection in the spreading
activation network between two concepts the value 0 results. Step two is to scale rows and
columns to unit vectors. Applying C to a vector of activations (of one or more concepts) yields
the result of one round of spreading activation. The operator eC to simulate any number of
spreading activation rounds (with diminishing returns) is calculated by Equation 5, see [10]:

eC = 1 + C +
C2

2!
+

C3

3!
+ . . . (5)

As C is square symmetric, it can be decomposed to C = V ΛV t. In this eigendecompo-
sition, V is the orthogonal real matrix of eigenvectors, whereas Λ is the diagonal matrix of
eigenvalues. We can raise this expression to any power, and cancel anything but the power of
Λ. What follows is that

eC ≈ V eΛV t (6)

To further ease computation, one can apply dimensionality reduction [10], i.e. keeping only
the largest eigenvalues and their corresponding eigenvectors.

In our implementation of the spreading activation algorithm we use real valued weights.
The weights are normalized in the range [0.0, 1.0]. We experimented with a number of decay
factor values, and decided on D = 0.3. As we are looking for concepts closely related to and
in close vicinity of the seed concept, a small decay factor is appropriate. No firing threshold is
used, i.e. F = 0.0.

The implementation of the spectral association approximation of spreading activation starts
with building the square symmetric concept matrix. Next a normalization step takes place.
Havasi et al. propose to use unit vectors for rows and columns [10], but this led to increasing
returns in Equation 5 when increasing n in Cn

n!
– which is not the expected behavior. Using

the determinant of the matrix instead for normalization gave results as expected.

We calculate the operator eC in two ways. The first variant uses spectral decomposi-
tion (eigendecomposition) to ease the approximation of eC , in line with the description in
Section 8.3 of the seminal paper [10]. This variant is referenced as spectral association or
SPECTRAL in the evaluation section. For the computation of eigenvectors and eigenvalues
we use NumPy’s linalg.eigh module [11], which is geared towards the generation of eigen-
vectors for symmetric matrices. NumPy2 is a package for scientific computing in Python. The
second variant, called brute force or BRUTE just calculates eC according to Equation 5 – with-
out the use of eigendecomposition. This makes the matrix multiplications more complicated,
but saves the computation of eigenvectors. We use brute force (i) to validate the correct
implementation of the spectral association method, and (ii) as a baseline when evaluating the
run-time characteristics of spectral association.

Finally, as soon as eC is computed, it can be used to simulate the activation of nodes
simply by multiplying (using the dot-product) eC with a concept vector where the values for
the concepts to activate are set to 1, else 0.

2http://www.numpy.org

Project Title: uComp
Project Coordinator: WU

17/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

The current version of the spectral association method can be found as an open source
package on the Web3 – free for use and modification. It is written in the Python programming
language and uses numpy for all matrix operations. The most important parameter for run-
time performance tuning is APPROX DEPTH. In Equation 5, the implementation calculates C
as far as the power of APPROX DEPTH. We currently use the value of 10 – which proved to
be more than sufficient in our experiments, as the factor gets very small (close to zero) with
higher powers. The same parameter is used in the approximation of eΛ, too.

8.4 Evaluation

This section provides an extensive evaluation of the methods described. As the purpose of
spectral association is to approximate and speed up the spreading activation process, the
evaluation focuses on a comparison of run-time characteristics. Furthermore we check if there
are significant differences in the resulting ontologies regarding quality of concepts or quality
of concept positioning.

Table 4 presents timings for the ontology extension phase, i.e. the total runtime of the
step of classic spreading activation (SPREADING), and the two variants of spectral association:
with spectral decomposition (SPECTRAL) and brute force (BRUTE). concepts refers to the
number of nodes in the spreading activation network, which also determines the size of the
concept matrix C in spectral association. The connections are the links between concepts
in the network. The table includes average data over multiple ontology generation runs for
each of the three ontology extension stages (Avg stage-1/2/3). Furthermore, it depicts the
single stage with the most concepts and connections (biggest) and a spectral association
run which uses dimensionality reduction (With DR).

Run concepts connections SPREADING SPECTRAL BRUTE
Avg stage-1 2495 3303 00:00:10 (1) 00:05:56 00:00:11
Avg stage-2 3843 9054 00:40:56 (91) 00:30:05 00:00:57
Avg stage-3 6101 18655 00:38:47 (86) 01:22:40 00:01:54
Biggest 6842 22342 00:44:35 (109) 01:43:46 00:02:35
With DR 6842 22342 – 00:35:33 –

Table 4: Run-times of the ontology extension step depending on the number of concepts

and the number of connections for spreading activation and the two variants of spectral
association.

It was very surprising to see that the brute force method performed best by far overall, for
networks with > 5000 connections 20-40 times faster than the other two. Classic spreading
activation sometimes outperformed spectral association, especially for small networks, and if
no dimensionality reduction was applied.

We performed a thorough analysis to investigate where time is spent:

• SPREADING activation: As expected, almost all of the computing time is consumed
by applying the activation algorithm to the network in concept detection and concept
positioning.

3http://wwwai.wu.ac.at/~wohlg/spectral_association

Project Title: uComp
Project Coordinator: WU

18/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

• BRUTE force spends most of its time (about 70%) generating the operator eC according
to Equation 5.

• SPECTRAL association uses almost all of its time in the generation of eC . In doing so,
NumPy consumes about 33% for generating the eigenvectors and -values. The matrix
multiplication in Equation 6 consumes the remaining computation time. This single
matrix multiplication is surprisingly costly, keeping in mind that we have around 10
matrix multiplications (with matrices of same size) in Equation 5 when computing eC

brute force – depending on the APPROX DEPTH. Additional investigation showed that the
matrices in Equation 6 are very dense, and that the concept matrix C in Equation 5 is
typically sparse – an important point further covered below.

Another surprising observation is the huge difference between Avg stage-1 (2672 concepts,
11 seconds) and Avg stage-2 (3154 concepts, 26 minutes) for the method spreading activation.
This is caused by two factors: (i) In stage-1 the network depth is very low (most nodes are
connected to the seed concepts directly), whereas in stage-2 the network depth increases –
which results in more steps of activation propagation. (ii) The number of activation processes
differs. In stage-1 the system just needs to activate the seed concepts, while in stage-2 it
positions the new concepts from stage-1 and activates the network. This results in about
60-110 activations, the exact number is given in parentheses in Table 4. A single activation
in stage-2 and stage-3 has a runtime of about 20-30 seconds.

The eigenvector variant of spectral association can be approximated further (and thereby
sped up) by dimensionality reduction (DR, see Section 8.3). Our implementation has an
(optional) parameter to set the requested number of dimensions, we used a value of 50 in
the experiments. As can be seen in Table 4, line With DR, applying DR reduces runtime to
about 35%. The 35% largely result from calling NumPy for the calculation of eigenvectors
(see above), so this variant is very effective to speed up the process. The use of DR had no
impact on the resulting ontologies, the approximation works as expected.

Table 5 depicts memory usage for the three methods depending on the network size. The
presented data reflects the maximum amount of memory allocated during runtime of the
process.

Run concepts connections SPREADING SPECTRAL BRUTE
stage-1 2672 3531 0.5 GB 0.4 GB 0.4 GB
stage-2 3154 12243 1.0 GB 2.0 GB 1.7 GB
stage-3 6842 22342 1.2 GB 3.3 GB 2.7 GB

Table 5: Maximum memory usage of the ontology extension step depending on the stage and
algorithm used.

We did not focus on optimizing memory usage at all, the goal of Table 5 is to give
rough comparison of the methods, and to observe scaling regarding memory consumption. As
expected, memory usage tends to scale linearly with the number of concepts and connections.
In variant SPECTRAL, memory usage is highest during NumPy’s computation of eigenvectors
and -values. If required, there will be a number of options to decrease memory usage, for
example experimenting with Numpy’s sparse matrix types or specific optimizations regarding

Project Title: uComp
Project Coordinator: WU

19/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

memory in the Python code. The machine we ran the experiments on had enough memory to
prevent any swapping to disk.

Complementing the evaluation of run-time performance, we also compared the quality of
results. Spectral association is intended as approximation of spreading activation, so results
should roughly be the same, although there are various parameter settings available. We
did three ontology extension runs for March, April and May 2013 which extended the seed
ontology with 25 candidate concepts in each of the three extension iterations, summing up
to 225 candidate concepts. Manual evaluation by domain experts showed that there was
no significant difference in the relevance of candidate concepts. The relevance was about
50% for all three methods (50% BRUTE, 50% SPECTRAL, 49% SPREADING). We also
investigated the effect of the application of the three methods on the quality of concept
positioning; no significant differences were found.

The experiments conducted suggest the following pros and cons, as well as areas of appli-
cation for the tree methods:

• Spreading activation: Among the pros of spreading activation is the interpretability
of the activation process, which can be traced easily, whereas spectral association is
rather a black box model. Spreading activation provides parameters for tuning the
activation process to fit ones specific needs (mainly with the firing threshold F and
decay D), while we do not see a simple way how to apply these tuning parameters in
the spectral association process. As stated above, the depth of the network, i.e. the
number of propagation steps necessary, strongly affects runtime performance. The more
propagation steps, the slower the process. Naturally, the number of propagation steps
also depends on decay factor D and firing threshold F .

The application of the method is advisable for small networks and situations in which
runtime performance is not an issue, in the (unlikely) case of only one or a few activations
needed, or if parameter tuning is required.

• Variants of spectral association: In contrast to spreading activation, in both spectral
association variants the main factor is the generation of eC , once this is done activation
is very fast - it’s just a simple matrix ◦ vector multiplication. This is a crucial point,
activation processes can be done almost instantly with this method. If the activation
process has to be further quickened, one can apply dimensionality reduction by using
only the largest eigenvalues and their corresponding eigenvectors [10]. Dimensionality
reduction also speeds up the the generation of eC , in our experiments by a factor of
approx. 3. However, it is not applicable in the brute force variant (as we do not compute
eigenvectors).

The sparser the concept matrix, i.e. the less connections between concepts, the faster
the computation of eC with the brute force method. We also tested with a dense matrix
(almost all values 6= 0), in that case brute force is consistently slower (around factor
2) than SPECTRAL overall. But in a typical scenario with a sparse concept matrix the
computations in Equation 5 are very efficient.

– Spectral association (with eigendecomposition): The variant allows the application
of dimensionality reduction to further reduce and approximate eC , and thereby

Project Title: uComp
Project Coordinator: WU

20/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

enables even faster activation processes. It is well suited for very dense networks
and if the runtime of activation is critical, and not so much the generation of eC .

– Brute force: In our run-time analyses which have to be further confirmed in other
environments and programming languages, the described brute force approach is
surprisingly efficient. Brute force is preferable when the number of activations is
limited and the time spent in both the generation of eC as well as activations is
critical – as in our ontology learning framework, where the method was performing
best by far.

8.5 CONCLUSIONS ON PERFORMANCE OPTIMIZATION

This section compares a classic method for searching networks, i.e. spreading activation, with
spectral association. Spectral association approximates the computationally intensive activa-
tion process using a matrix operator called eC . The generation of this matrix via spectral
decomposition is complex for large spreading activation nets, therefore spectral association is
particularly well suited where eC is used for many activation processes. In situations where
instant results for an activation (e.g. in interactive applications) are needed, spectral associ-
ation is the only option. We also tested a simpler way to generate the operator eC , named
brute force, which – under the circumstances we investigated – provides far superior runtime
performance in generating eC .

The main contributions of this section are (i) extensively evaluating spreading activation
vs. spectral association in the domain for ontology learning regarding various sizes of concept
networks, (ii) showing that the brute force method is very efficient (20–40 times faster than
spreading activation) in our experiments, (iii) the provision of an (open-source) implementation
of spectral association in Python, (iv) giving hints under what circumstances to apply which
method.

Future work will include experimenting with a wider range of network sizes and parameter
settings, using other libraries for example to compute eigenvectors, and the application of
other programming languages to verify the results.

9 Conclusions

In this deliverable (D4.2 v1) a detailed view on many achievements in WP4 has been reported.
The achievements include improvements regarding runtime and scalability, the setup of an
infrastructure for doing ontology evolution experiments, the preparations to handle multiple
domains, and an initial version of impact refinement and integration of ontology learning the
Embedded Human Computation.

With this foundational work, we plan to implement all of the requirements for v2 of D4.2,
in a nutshell that is mulitlingual ontology learning in multiple domains combined with ontology
evolution and trend detection experiments,

Project Title: uComp
Project Coordinator: WU

21/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

References

[1] Cambria, E., Hussain, A., Eckl, C.: Taking refuge in your personal sentic corner. In: Bandy-
opadhyay, S., Okumurra, M. (eds.) Proceedings of IJCNLP, Workshop on Sentiment Analysis
where AI meets Psychology. pp. 35–43. Chiang Mai, Thailand (2011)

[2] Cimiano, P., Maedche, A., Staab, S., Voelker, J.: Ontology learning. In: Staab, S.,
Rudi Studer, D. (eds.) Handbook on Ontologies, pp. 245–267. International Handbooks
on Information Systems, Springer Berlin Heidelberg (2009), http://dx.doi.org/10.1007/

978-3-540-92673-3_11

[3] Collins, A.M., Loftus, E.F.: A spreading-activation theory of semantic processing. Psychological
Review 82(6), 407–428 (1975)

[4] Crestani, F.: Application of spreading activation techniques in information retrieval. Artificial
Intelligence Review 11(6), 453–482 (1997)

[5] Dix, A.J., Katifori, A., Lepouras, G., Vassilakis, C., Shabir, N.: Spreading activation over
ontology-based resources: from personal context to web scale reasoning. International Journal
of Semantic Computing 4(1), 59–102 (2010)

[6] Fellbaum, C.: Wordnet an electronic lexical database. Computational Linguistics 25(2), 292–296
(1998)

[7] Haase, P., Stojanovic, L.: Consistent evolution of owl ontologies. In: Proceedings of the
Second European Semantic Web Conference, Heraklion, Greece. pp. 182–197 (2005), http:
//citeseer.ist.psu.edu/haase05consistent.html

[8] Hasan, M.M.: A spreading activation framework for ontology-enhanced adaptive information
access within organisations. In: van Elst, L., Dignum, V., Abecker, A. (eds.) AMKM. Lecture
Notes in Computer Science, vol. 2926, pp. 288–296. Springer (2003)

[9] Havasi, C., Borovoy, R., Kizelshteyn, B., Ypodimatopoulos, P., Ferguson, J., Holtzman, H.,
Lippman, A., Schultz, D., Blackshaw, M., Elliott, G.T.: The glass infrastructure: Using common
sense to create a dynamic, place-based social information system. AI Magazine 33(2), 91–102
(2012)

[10] Havasi, C., Speer, R., Holmgren, J.: Automated color selection using semantic knowledge. In:
AAAI Fall Symposium Series. Arlington, Texas (2010)

[11] Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python
(2001–), http://www.scipy.org/

[12] Katifori, A., Vassilakis, C., Dix, A.J.: Ontologies and the brain: Using spreading activation
through ontologies to support personal interaction. Cognitive Systems Research 11(1), 25–41
(2010)

[13] Liu, W., Weichselbraun, A., Scharl, A., Chang, E.: Semi-automatic ontology ex-
tension using spreading activation. Journal of Universal Knowledge Management 0(1),
50–58 (2005), http://www.jukm.org/jukm\textunderscore0\textunderscore1/semi\

textunderscoreautomatic\textunderscoreontology\textunderscoreextension

Project Title: uComp
Project Coordinator: WU

22/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

Version 1.0, May.15, 2014

[14] Liu, W., Weichselbraun, A., Scharl, A., Chang, E.: Semi-automatic ontology extension using
spreading activation. Journal of Universal Knowledge Management 0(1), 50–58 (2005)

[15] Maynard, D., Aswani, N.: Bottom-up Evolution of Networked Ontologies from Metadata (NeOn
Deliverable D1.5.4) (2010)

[16] Natasha F. Noy, Jonathan Mortensen, P.A., Musen, M.: Mechanical turk as an ontology engi-
neer? In: Proceedings of the ACM Web Science 2013 (WebSci’13). Paris, Forthcoming (02-04
May 2013)

[17] Scharl, A., Sabou, M., Föls, M.: Climate quiz: a web application for eliciting and validating
knowledge from social networks. In: WebMedia. pp. 189–192 (2012)

[18] Siorpaes, K., Hepp, M.: OntoGame: Weaving the semantic web by online games. In: Bechhofer,
S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) 5th European Semantic Web Conference
(ESWC). vol. 5021, pp. 751–766. Springer (2008)

[19] Speer, R., Havasi, C., Lieberman, H.: Analogyspace: Reducing the dimensionality of common
sense knowledge. In: Fox, D., Gomes, C.P. (eds.) AAAI. pp. 548–553. AAAI Press (2008)

[20] Weichselbraun, A., Wohlgenannt, G., Scharl, A.: Augmenting lightweight domain ontologies
with social evidence sources. In: Tjoa, A.M., Wagner, R.R. (eds.) 9th International Workshop
on Web Semantics, 21st International Conference on Database and Expert Systems Applications
(DEXA 2010). pp. 193–197. IEEE Computer Society Press, Bilbao, Spain (August 2010)

[21] Weichselbraun, A., Wohlgenannt, G., Scharl, A.: Refining non-taxonomic relation labels with
external structured data to support ontology learning. Data & Knowledge Engineering 69(8),
763–778 (2010)

[22] Wohlgenannt, G., Weichselbraun, A., Scharl, A., Sabou, M.: Dynamic integration of multiple
evidence sources for ontology learning. Journal of Information and Data Management (JIDM)
3(3), 243–254 (2012)

[23] Wong, W., Liu, W., Bennamoun, M.: Ontology learning from text: A look back and into the
future. ACM Computing Surveys 44(4), 20:1–20:36 (Sep 2012)

Project Title: uComp
Project Coordinator: WU

23/23 Contract No. CHIST-ERA-FWF 1097-N23
www.ucomp.eu

